If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-10X-61=0
a = 1; b = -10; c = -61;
Δ = b2-4ac
Δ = -102-4·1·(-61)
Δ = 344
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{344}=\sqrt{4*86}=\sqrt{4}*\sqrt{86}=2\sqrt{86}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{86}}{2*1}=\frac{10-2\sqrt{86}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{86}}{2*1}=\frac{10+2\sqrt{86}}{2} $
| 5(5x-1)-x=-151 | | 8x+20=18x-7 | | −6u−14=−3 | | -3/2e=-24 | | 5x+4+3x+7+x=180 | | 16-0.32+5.8=3.8y | | 4.125(3x-4)=33 | | 4x-13=69 | | (4/5)+(1/4)t=(3/5) | | 2x2+4x-1920=0 | | 255=3-7(6x-6) | | 20x+3=28x+2 | | 3(x-1.8)=2x+9 | | 42-x+x=180 | | -x+(3+x)=3 | | 6^x=15.36 | | 5(r-2)=10(r-1)-5r | | 3/4(v+12=3v-9 | | 20=8+4n | | x+25+x=180 | | 6+b=26 | | 3m+6=9-7m | | 9=z−22 | | 5(x-4)=5-(4x-29) | | 5n-4.5=3n-2.3 | | 2n−16=4 | | 2n−16=42 | | 8.95+15r=26.95 | | 2(n−8)=4 | | -(5/u-2)=4 | | 13x+22=109 | | 120=3x+5(1+4x) |